Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nephrol Dial Transplant ; 2023 Jan 19.
Article in English | MEDLINE | ID: covidwho-2310845

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a remarkable kidney tropism. While kidney affection is common in severe coronavirus disease-2019 (COVID-19), data on non-severe courses is limited. Here we provide a multilevel analysis of kidney outcomes after non-severe COVID-19 to test for eventual kidney sequela. METHODS: This cross-sectional study investigates individuals after COVID-19 and matched controls recruited from the Hamburg City Health Study (HCHS) and its COVID-19 program. The HCHS is a prospective population-based cohort study within the city of Hamburg, Germany. During the COVID-19 pandemic the study additionally recruited subjects after PCR-confirmed SARS-CoV-2 infections. Matching was performed by age, sex, and education. Main outcomes were eGFR, albuminuria, Dickkopf3, hematuria, and pyuria. RESULTS: 443 subjects in median 9 months after non-severe COVID-19 were compared to 1328 non-COVID-19 subjects. Mean eGFR was mildly lower in post-COVID-19 than non-COVID-19 subjects, even after adjusting for known risk factors (beta -1.84, 95%-confidence interval (CI) -3.16 to -0.52). However, chronic kidney disease (OR 0.90, 95%-CI 0.48 to 1.66) or severely increased albuminuria (OR 0.76, 95%-CI 0.49 to 1.09) equally occurred in post-COVID-19 and non-COVID-19 subjects. Hematuria, pyuria, and proteinuria were also similar between the two cohorts suggesting no ongoing kidney injury after non-severe COVID-19. Further, Dickkopf3 was not increased in the post-COVID-19 cohort indicating no systematic risk for ongoing GFR decline (beta -72.19, 95%-CI -130.0 to -14.4). CONCLUSIONS: While mean eGFR was slightly lower in subjects after non-severe COVID-19, there was no evidence for an ongoing or progressive kidney sequela.

2.
Transpl Int ; 36: 10883, 2023.
Article in English | MEDLINE | ID: covidwho-2271842

ABSTRACT

Among heart transplant (HT) recipients, a reduced immunological response to SARS-CoV-2 vaccination has been reported. We aimed to assess the humoral and T-cell response to SARS-CoV-2 vaccination in HT recipients to understand determinants of immunogenicity. HT recipients were prospectively enrolled from January 2021 until March 2022. Anti-SARS-CoV-2-Spike IgG levels were quantified after two and three doses of a SARS-CoV-2 vaccine (BNT162b2, mRNA1273, or AZD1222). Spike-specific T-cell responses were assessed using flow cytometry. Ninety-one patients were included in the study (69% male, median age 55 years, median time from HT to first vaccination 6.1 years). Seroconversion rates were 34% after two and 63% after three doses. Older patient age (p = 0.003) and shorter time since HT (p = 0.001) were associated with lower antibody concentrations after three vaccinations. There were no associations between vaccine types or immunosuppressive regimens and humoral response, except for prednisolone, which was predictive of a reduced response after two (p = 0.001), but not after three doses (p = 0.434). A T-cell response was observed in 50% after two and in 74% after three doses. Despite three vaccine doses, a large proportion of HT recipients exhibits a reduced immune response. Additional strategies are desirable to improve vaccine immunogenicity in this vulnerable group of patients.


Subject(s)
COVID-19 , Heart Transplantation , Humans , Male , Middle Aged , Female , COVID-19 Vaccines , BNT162 Vaccine , ChAdOx1 nCoV-19 , SARS-CoV-2 , Vaccination , Antibodies, Viral , Immunoglobulin G , Transplant Recipients
3.
Eur Heart J ; 43(20): 1994, 2022 05 21.
Article in English | MEDLINE | ID: covidwho-2236460
4.
Eur Heart J ; 43(11): 1124-1137, 2022 03 14.
Article in English | MEDLINE | ID: covidwho-1853027

ABSTRACT

AIMS: Long-term sequelae may occur after SARS-CoV-2 infection. We comprehensively assessed organ-specific functions in individuals after mild to moderate SARS-CoV-2 infection compared with controls from the general population. METHODS AND RESULTS: Four hundred and forty-three mainly non-hospitalized individuals were examined in median 9.6 months after the first positive SARS-CoV-2 test and matched for age, sex, and education with 1328 controls from a population-based German cohort. We assessed pulmonary, cardiac, vascular, renal, and neurological status, as well as patient-related outcomes. Bodyplethysmography documented mildly lower total lung volume (regression coefficient -3.24, adjusted P = 0.014) and higher specific airway resistance (regression coefficient 8.11, adjusted P = 0.001) after SARS-CoV-2 infection. Cardiac assessment revealed slightly lower measures of left (regression coefficient for left ventricular ejection fraction on transthoracic echocardiography -0.93, adjusted P = 0.015) and right ventricular function and higher concentrations of cardiac biomarkers (factor 1.14 for high-sensitivity troponin, 1.41 for N-terminal pro-B-type natriuretic peptide, adjusted P ≤ 0.01) in post-SARS-CoV-2 patients compared with matched controls, but no significant differences in cardiac magnetic resonance imaging findings. Sonographically non-compressible femoral veins, suggesting deep vein thrombosis, were substantially more frequent after SARS-CoV-2 infection (odds ratio 2.68, adjusted P < 0.001). Glomerular filtration rate (regression coefficient -2.35, adjusted P = 0.019) was lower in post-SARS-CoV-2 cases. Relative brain volume, prevalence of cerebral microbleeds, and infarct residuals were similar, while the mean cortical thickness was higher in post-SARS-CoV-2 cases. Cognitive function was not impaired. Similarly, patient-related outcomes did not differ. CONCLUSION: Subjects who apparently recovered from mild to moderate SARS-CoV-2 infection show signs of subclinical multi-organ affection related to pulmonary, cardiac, thrombotic, and renal function without signs of structural brain damage, neurocognitive, or quality-of-life impairment. Respective screening may guide further patient management.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19/epidemiology , Cohort Studies , Humans , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
6.
Reports ; 5(1):1, 2022.
Article in English | ProQuest Central | ID: covidwho-1760805

ABSTRACT

Vitamin D is known as an antirachitic factor, although it also plays a critical role in several nonskeletal diseases. In our study, we evaluated vitamin D status and sex, age and seasonal association in a general population cohort living in central Italy. Data from 1174 men and 2274 women aged 20–81 were analyzed, and stored serum samples were assayed for 25-hydroxyvitamin D (25(OH)D). Vitamin D was low in both sexes with values significantly lower in women than in men;furthermore, its deficiency was highly correlated with age. The younger men had just sufficient 25(OH)D levels (32.3 ng/mL ± 13.2), which decreased with increasing age. The younger women showed insufficient 25(OH)D levels (24.8 ng/mL ± 11.9) that, as with men, further decreased with increasing age. This study demonstrated that hypovitaminosis D may be a very frequent condition also in a rural central Italian area with remarkable solar irradiation throughout the year. Our data clearly indicated an evident seasonal trend: at the end of the winter, serum 25(OH)D levels of the examined cohort were below the official sufficient value for both adult sexes. Sufficient levels were just reached in summer for men and only at the end of summer for young women.

7.
Cardiovasc Res ; 118(2): 542-555, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1467310

ABSTRACT

AIMS: Cardiac involvement in COVID-19 is associated with adverse outcome. However, it is unclear whether cell-specific consequences are associated with cardiac SARS-CoV-2 infection. Therefore, we investigated heart tissue utilizing in situ hybridization, immunohistochemistry, and RNA-sequencing in consecutive autopsy cases to quantify virus load and characterize cardiac involvement in COVID-19. METHODS AND RESULTS: In this study, 95 SARS-CoV-2-positive autopsy cases were included. A relevant SARS-CoV-2 virus load in the cardiac tissue was detected in 41/95 deceased (43%). Massive analysis of cDNA ends (MACE)-RNA-sequencing was performed to identify molecular pathomechanisms caused by the infection of the heart. A signature matrix was generated based on the single-cell dataset 'Heart Cell Atlas' and used for digital cytometry on the MACE-RNA-sequencing data. Thus, immune cell fractions were estimated and revealed no difference in immune cell numbers in cases with and without cardiac infection. This result was confirmed by quantitative immunohistological diagnosis. MACE-RNA-sequencing revealed 19 differentially expressed genes (DEGs) with a q-value <0.05 (e.g. up: IFI44L, IFT3, TRIM25; down: NPPB, MB, MYPN). The upregulated DEGs were linked to interferon pathways and originate predominantly from endothelial cells. In contrast, the downregulated DEGs originate predominately from cardiomyocytes. Immunofluorescent staining showed viral protein in cells positive for the endothelial marker ICAM1 but rarely in cardiomyocytes. The Gene Ontology (GO) term analysis revealed that downregulated GO terms were linked to cardiomyocyte structure, whereas upregulated GO terms were linked to anti-virus immune response. CONCLUSION: This study reveals that cardiac infection induced transcriptomic alterations mainly linked to immune response and destruction of cardiomyocytes. While endothelial cells are primarily targeted by the virus, we suggest cardiomyocyte destruction by paracrine effects. Increased pro-inflammatory gene expression was detected in SARS-CoV-2-infected cardiac tissue but no increased SARS-CoV-2 associated immune cell infiltration was observed.


Subject(s)
COVID-19/complications , Heart/virology , SARS-CoV-2/isolation & purification , Transcriptome , Aged , Aged, 80 and over , Autopsy , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Female , Humans , Inflammation/complications , Male , Myocardium/metabolism , Myocardium/pathology , SARS-CoV-2/physiology , Virus Replication
8.
Clin Res Cardiol ; 109(12): 1540-1548, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-694641

ABSTRACT

AIMS: The first reports of declining hospital admissions for major cardiovascular emergencies during the COVID-19 pandemic attracted public attention. However, systematic evidence on this subject is sparse. We aimed to investigate the rate of emergent hospital admissions, subsequent invasive treatments and comorbidities during the COVID-19 pandemic in Germany. METHODS AND RESULTS: This was a retrospective analysis of health insurance claims data from the second largest insurance fund in Germany, BARMER. Patients hospitalized for acute myocardial infarction, acute limb ischemia, aortic rupture, stroke or transient ischemic attack (TIA) between January 1, 2019, and May 31, 2020, were included. Admission rates per 100,000 insured, invasive treatments and comorbidities were compared from January-May 2019 (pre-COVID) to January-May 2020 (COVID). A total of 115,720 hospitalizations were included in the current analysis (51.3% females, mean age 72.9 years). Monthly admission rates declined from 78.6/100,000 insured (pre-COVID) to 70.6/100,000 (COVID). The lowest admission rate was observed in April 2020 (61.6/100,000). Administration rates for ST-segment elevation myocardial infarction (7.3-6.6), non-ST-segment elevation myocardial infarction (16.8-14.6), acute limb ischemia (5.1-4.6), stroke (35.0-32.5) and TIA (13.7-11.9) decreased from pre-COVID to COVID. Baseline comorbidities and the percentage of these patients treated with interventional or open-surgical procedures remained similar over time across all entities. In-hospital mortality in hospitalizations for stroke increased from pre-COVID to COVID (8.5-9.8%). CONCLUSIONS: Admission rates for cardiovascular and cerebrovascular emergencies declined during the pandemic in Germany, while patients' comorbidities and treatment allocations remained unchanged. Further investigation is warranted to identify underlying reasons and potential implications on patients' outcomes.


Subject(s)
COVID-19 , Cardiology Service, Hospital/trends , Cardiovascular Diseases/therapy , Cerebrovascular Disorders/therapy , Emergency Service, Hospital/trends , Health Services Accessibility/trends , Patient Admission/trends , Administrative Claims, Healthcare , Aged , COVID-19/epidemiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cerebrovascular Disorders/diagnosis , Cerebrovascular Disorders/epidemiology , Comorbidity , Databases, Factual , Female , Germany/epidemiology , Humans , Male , Patient Acceptance of Health Care , Retrospective Studies , Time Factors
9.
JAMA Cardiol ; 5(11): 1281-1285, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-676377

ABSTRACT

Importance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be documented in various tissues, but the frequency of cardiac involvement as well as possible consequences are unknown. Objective: To evaluate the presence of SARS-CoV-2 in the myocardial tissue from autopsy cases and to document a possible cardiac response to that infection. Design, Setting, and Participants: This cohort study used data from consecutive autopsy cases from Germany between April 8 and April 18, 2020. All patients had tested positive for SARS-CoV-2 in pharyngeal swab tests. Exposures: Patients who died of coronavirus disease 2019. Main Outcomes and Measures: Incidence of SARS-CoV-2 positivity in cardiac tissue as well as CD3+, CD45+, and CD68+ cells in the myocardium and gene expression of tumor necrosis growth factor α, interferon γ, chemokine ligand 5, as well as interleukin-6, -8, and -18. Results: Cardiac tissue from 39 consecutive autopsy cases were included. The median (interquartile range) age of patients was 85 (78-89) years, and 23 (59.0%) were women. SARS-CoV-2 could be documented in 24 of 39 patients (61.5%). Viral load above 1000 copies per µg RNA could be documented in 16 of 39 patients (41.0%). A cytokine response panel consisting of 6 proinflammatory genes was increased in those 16 patients compared with 15 patients without any SARS-CoV-2 in the heart. Comparison of 15 patients without cardiac infection with 16 patients with more than 1000 copies revealed no inflammatory cell infiltrates or differences in leukocyte numbers per high power field. Conclusions and Relevance: In this analysis of autopsy cases, viral presence within the myocardium could be documented. While a response to this infection could be reported in cases with higher virus load vs no virus infection, this was not associated with an influx of inflammatory cells. Future investigations should focus on evaluating the long-term consequences of this cardiac involvement.


Subject(s)
Autopsy/methods , COVID-19/complications , Cardiovascular Infections/etiology , SARS-CoV-2/genetics , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Cardiovascular Infections/metabolism , Cardiovascular Infections/virology , Chemokines/metabolism , Cohort Studies , Female , Germany/epidemiology , Humans , Incidence , Interferon-gamma/metabolism , Interleukin-18/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Male , Myocarditis/etiology , Myocarditis/metabolism , Myocarditis/virology , Myocardium/immunology , Myocardium/metabolism , Pandemics , Peptide Fragments/metabolism , SARS-CoV-2/isolation & purification , Tumor Necrosis Factor-alpha/metabolism , Viral Load/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL